Skip to content
Snippets Groups Projects

CS4804 Mini-Project OCR

Due days

04/24 Presentation

Coding should end before Presentation

05/01 Final Report & Submission

Presentation

A short class presentation (6~8 minutes)

Q & A (2 minutes)

Presentation:

  • Title
  • Problem statement and analysis
  • Use-Case scenarios
  • AI algorithm and model
  • Results and demonstration
  • Lesson learned
  • Q & A

Final Report

A maximum of 8 pages summarizes all aspects of the project:

  • Problem statement and analysis
  • Use-Case scenarios
  • Literature review
  • AI algorithm and model
  • Results and demonstration
  • Code and documentation
  • Lessons learned
  • Future work (if any)

Final Submission

Compile all files into a zip file, including:

  • Presentation slides
  • Code (file or link)
  • Final report

Ensure that all links in your report and slides are accessible

Code Specifications

  1. Language: Python

  2. Third-party library: Install all with pip install -r requirements.txt

    • tensorflow pip install tensorflow
    • scikit-learn pip install scikit-learn
    • openCV pip install opencv-python
  3. Trainning dataset:

    1. English Handwritten Characters Size: 13.7 MB / 25.2 MB(after unzip)
    2. Handwritten Digits and English Characters Size: 85 MB / 545.57 MB(after unzip)
  4. Usage

    python train-ocr-model.py -d eng_dataset/dataset_mnist.csv -s -m new-model.keras -p result.png

    python run-ocr-model.py -i simple_ocr_example/test_cases/hand_writing/1-image.png -m new-model.keras -s 28