Newer
Older
1. Language: Python3
2. Install third-party library
```pip install -r requirements.txt```
3. Trainning dataset:
1. [English Handwritten Characters](https://www.kaggle.com/datasets/dhruvildave/english-handwritten-characters-dataset) Size: 13.7 MB / 25.2 MB(after unzip)
2. [Handwritten Digits and English Characters](https://www.kaggle.com/datasets/hrishabhtiwari/handwritten-digits-and-english-characters/) Size: 85 MB / 545.57 MB(after unzip)
**Please place all unzipped dataset files under *dataset* folder**
1. Train the model
```train-ocr-model.py [-h] -d DATASET [-m MODEL] [-p PLOT] [-s] [-t]```
Example:
```python train-ocr-model.py -d dataset/dataset_mnist.csv -s -m model.keras -p result.png```
2. Implement OCR by running model
```run-ocr-model.py [-h] -m MODEL -i IMAGE -s SIZE```
```python run-ocr-model.py -m model.keras -i /test_cases/hand_writing/1-image.png -s 28```