Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#include "memory.h"
#include <cstdlib>
#include <unordered_map>
using namespace Retro;
using namespace std;
Endian Retro::reduce(Endian e) {
switch (e) {
case Endian::BIG:
case Endian::LITTLE:
case Endian::UNDEF:
case Endian::MIXED_BL:
case Endian::MIXED_LB:
return e;
case Endian::NATIVE:
return Endian::REAL_NATIVE;
case Endian::MIXED_BN:
return Endian::REAL_MIXED_BN;
case Endian::MIXED_LN:
return Endian::REAL_MIXED_LN;
}
return e;
}
bool Retro::reduceCompare(Endian a, Endian b) {
return reduce(a) == reduce(b);
}
DataType::DataType(const char* type)
: width(type[strlen(type) - 1] - '0')
, endian(
type[0] == '=' ? Endian::NATIVE : type[0] == '>' ? (type[1] == '<' ? Endian::MIXED_BL : type[1] == '=' ? Endian::MIXED_BN : Endian::BIG) : type[0] == '<' ? (type[1] == '>' ? Endian::MIXED_LB : type[1] == '=' ? Endian::MIXED_LN : Endian::LITTLE) : Endian::UNDEF)
, repr(static_cast<Repr>(type[strlen(type) - 2]))
, type{ type[0], type[1], type[2], type[3] }
, maskLo(repr == Repr::LN_BCD || repr == Repr::BCD ? 0xF : 0xFF)
, maskHi(repr == Repr::BCD ? 0xF0 : 0x0)
, cvt(repr == Repr::BCD || repr == Repr::LN_BCD ? 10 : 256) {
uint64_t shiftInc =
repr == Repr::BCD ? 100 : repr == Repr::LN_BCD ? 10 : 256;
int baseLoc;
int baseEnd;
int halfLoc = -1;
int diff;
switch (reduce(endian)) {
case Endian::LITTLE:
default:
baseLoc = 0;
baseEnd = width;
diff = 1;
break;
case Endian::BIG:
baseLoc = width - 1;
baseEnd = -1;
diff = -1;
break;
case Endian::MIXED_LB:
baseLoc = width / 2 - 1;
baseEnd = -1;
halfLoc = width - 1;
diff = -1;
break;
case Endian::MIXED_BL:
baseLoc = width / 2;
baseEnd = width;
halfLoc = 0;
diff = 1;
break;
}
uint64_t baseShift = 1;
for (int i = baseLoc; i != baseEnd; i += diff, baseShift *= shiftInc) {
shift[i] = baseShift;
}
if (halfLoc >= 0) {
for (int i = halfLoc; i != baseLoc; i += diff, baseShift *= shiftInc) {
shift[i] = baseShift;
}
}
}
DataType::DataType(const string& type)
: DataType(type.c_str()) {
}
Datum DataType::operator()(void* base) const {
return Datum(base, *this);
}
Datum DataType::operator()(void* base, size_t offset, const MemoryOverlay& overlay) const {
return Datum(base, offset, *this, overlay);
}
bool DataType::operator==(const DataType& other) const {
return width == other.width && endian == other.endian && repr == other.repr;
}
bool DataType::operator!=(const DataType& other) const {
return !(*this == other);
}
void DataType::encode(void* buffer, int64_t value) const {
for (size_t i = 0; i < width; ++i) {
uint64_t b = (uint64_t) value / shift[i];
b = b % cvt + b / cvt % cvt * (~maskHi + 1);
static_cast<uint8_t*>(buffer)[i] = b;
}
}
int64_t DataType::decode(const void* buffer) const {
int64_t datum = 0;
for (size_t i = 0; i < width; ++i) {
uint8_t b = static_cast<const uint8_t*>(buffer)[i];
datum += ((b & maskLo) % cvt + ((b & maskHi) >> 4) % cvt * 10) * shift[i];
}
if (repr == Repr::SIGNED) {
datum <<= 8 * (8 - width);
datum >>= 8 * (8 - width);
}
return datum;
}
size_t hash<DataType>::operator()(const DataType& type) const {
return hash<uint32_t>()(*reinterpret_cast<const uint32_t*>(type.type));
}
static constexpr char endianTag(Endian e) {
switch (e) {
case Endian::BIG:
return '>';
case Endian::LITTLE:
return '<';
default:
case Endian::UNDEF:
return '|';
case Endian::NATIVE:
return '=';
}
}
MemoryOverlay::MemoryOverlay(Endian backing, Endian real, size_t width)
: width(width)
, m_backing({ endianTag(backing), 'u', static_cast<char>('0' + width) })
, m_real({ endianTag(real), 'u', static_cast<char>('0' + width) }) {
}
MemoryOverlay::MemoryOverlay(char backing, char real, size_t width)
: width(width)
, m_backing({ backing, 'u', static_cast<char>('0' + width) })
, m_real({ real, 'u', static_cast<char>('0' + width) }) {
}
void* MemoryOverlay::parse(const void* in, size_t offset, void* out, size_t size) const {
size_t offsetEdge = offset & (width - 1);
uintptr_t base = reinterpret_cast<uintptr_t>(in);
base += offset & ~(width - 1);
size += offsetEdge;
uintptr_t outBase = reinterpret_cast<uintptr_t>(out);
for (size_t i = 0; i < size; i += width) {
int64_t val = m_backing.decode(reinterpret_cast<const void*>(base + i));
m_real.encode(reinterpret_cast<void*>(outBase + i), val);
}
return reinterpret_cast<void*>(outBase + offsetEdge);
}
void MemoryOverlay::unparse(void* out, size_t offset, const void* in, size_t size) const {
size_t offsetEdge = offset & (width - 1);
uintptr_t base = reinterpret_cast<uintptr_t>(out);
base += offset & ~(width - 1);
size += offsetEdge;
uintptr_t inBase = reinterpret_cast<uintptr_t>(in);
for (size_t i = 0; i < size; i += width) {
int64_t val = m_real.decode(reinterpret_cast<void*>(inBase + i));
m_backing.encode(reinterpret_cast<void*>(base + i), val);
}
}
Datum::Datum(void* base, const DataType& type)
: m_base(base)
, m_type(type) {
}
Datum::Datum(void* base, size_t offset, const DataType& type, const MemoryOverlay& overlay)
: m_base(base)
, m_offset(offset)
, m_type(type)
, m_overlay(overlay) {
}
Datum::Datum(void* base, const Variable& var, const MemoryOverlay& overlay)
: m_base(base)
, m_offset(var.address)
, m_type(var.type)
, m_mask(var.mask)
, m_overlay(overlay) {
}
Datum& Datum::operator=(int64_t value) {
if (m_base) {
if (m_overlay.width > 1 || m_offset) {
uint8_t fakeBase[16]{};
m_type.encode(m_overlay.parse(m_base, m_offset, reinterpret_cast<void*>(fakeBase), m_type.width), value);
m_overlay.unparse(m_base, m_offset, reinterpret_cast<void*>(fakeBase), m_type.width);
} else {
m_type.encode(m_base, value);
}
}
return *this;
}
Datum::operator int64_t() const {
if (!m_base) {
return 0;
}
int64_t value;
if (m_overlay.width > 1 || m_offset) {
uint8_t fakeBase[16]{};
value = m_type.decode(m_overlay.parse(m_base, m_offset, reinterpret_cast<void*>(fakeBase), m_type.width));
} else {
value = m_type.decode(m_base);
}
return value & m_mask;
}
DynamicMemoryView::DynamicMemoryView(void* buffer, size_t bytes, const DataType& dtype, const MemoryOverlay& overlay)
: dtype(dtype)
, overlay(overlay) {
m_mem.open(buffer, bytes);
}
Datum DynamicMemoryView::operator[](size_t offset) {
return dtype(m_mem.offset(0), offset, overlay);
}
int64_t DynamicMemoryView::operator[](size_t offset) const {
if (overlay.width > 1) {
uint8_t fakeBase[16]{};
return dtype.decode(overlay.parse(m_mem.offset(0), offset, reinterpret_cast<void*>(fakeBase), dtype.width));
}
return dtype.decode(m_mem.offset(offset));
}
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
void AddressSpace::addBlock(size_t offset, size_t size, void* data) {
if (data) {
m_blocks[offset].open(data, size);
} else {
m_blocks[offset].open(size);
}
}
void AddressSpace::addBlock(size_t offset, size_t size, const void* data) {
if (data) {
m_blocks[offset].clone(data, size);
} else {
m_blocks[offset].open(size);
}
}
void AddressSpace::addBlock(size_t offset, const MemoryView<>& base) {
m_blocks[offset].clone(base);
}
void AddressSpace::updateBlock(size_t offset, void* data) {
m_blocks[offset].open(data, m_blocks[offset].size());
}
void AddressSpace::updateBlock(size_t offset, const void* data) {
m_blocks[offset].clone(data, m_blocks[offset].size());
}
void AddressSpace::updateBlock(size_t offset, const MemoryView<>& base) {
m_blocks[offset].clone(base);
}
bool AddressSpace::hasBlock(size_t offset) const {
for (const auto& block : m_blocks) {
if (offset < block.first) {
continue;
}
if (offset < block.first + block.second.size()) {
return true;
}
}
return false;
}
const MemoryView<>& AddressSpace::block(size_t offset) const {
for (const auto& block : m_blocks) {
if (offset < block.first) {
continue;
}
if (offset < block.first + block.second.size()) {
return block.second;
}
}
throw std::out_of_range("No known mapping");
}
MemoryView<>& AddressSpace::block(size_t offset) {
for (auto& block : m_blocks) {
if (offset < block.first) {
continue;
}
if (offset < block.first + block.second.size()) {
return block.second;
}
}
throw std::out_of_range("No known mapping");
}
bool AddressSpace::ok() const {
return m_blocks.size() > 0;
}
void AddressSpace::reset() {
m_blocks.clear();
}
void AddressSpace::clone(const AddressSpace& as) {
m_blocks.clear();
m_overlay = make_unique<MemoryOverlay>(*as.m_overlay);
for (auto& kv : as.m_blocks) {
m_blocks[kv.first].clone(kv.second);
}
}
void AddressSpace::clone() {
for (auto& kv : m_blocks) {
kv.second.clone();
}
}
void AddressSpace::setOverlay(const MemoryOverlay& overlay) {
m_overlay = make_unique<MemoryOverlay>(overlay);
}
Datum AddressSpace::operator[](size_t offset) {
for (auto& kv : m_blocks) {
if (offset < kv.first) {
throw std::out_of_range("No known mapping");
}
if (offset - kv.first >= kv.second.size()) {
continue;
}
return Datum(kv.second.offset(0), offset - kv.first, s_type, *m_overlay);
}
throw std::out_of_range("No known mapping");
}
Datum AddressSpace::operator[](const Variable& var) {
for (auto& kv : m_blocks) {
if (var.address < kv.first) {
throw std::out_of_range("No known mapping");
}
if (var.address - kv.first >= kv.second.size()) {
continue;
}
return Datum(kv.second.offset(0), Variable{ var.type, var.address - kv.first, var.mask }, *m_overlay);
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
}
throw std::out_of_range("No known mapping");
}
uint8_t AddressSpace::operator[](size_t offset) const {
for (const auto& kv : m_blocks) {
if (offset < kv.first) {
throw std::out_of_range("No known mapping");
}
if (offset - kv.first >= kv.second.size()) {
continue;
}
uint8_t fakeBase[16]{};
return s_type.decode(m_overlay->parse(kv.second.offset(0), offset - kv.first, reinterpret_cast<void*>(fakeBase), s_type.width));
}
throw std::out_of_range("No known mapping");
}
int64_t AddressSpace::operator[](const Variable& var) const {
for (const auto& kv : m_blocks) {
if (var.address < kv.first) {
throw std::out_of_range("No known mapping");
}
if (var.address - kv.first >= kv.second.size()) {
continue;
}
int64_t value;
if (m_overlay->width > 1) {
uint8_t fakeBase[16];
value = var.type.decode(m_overlay->parse(kv.second.offset(0), var.address - kv.first, reinterpret_cast<void*>(fakeBase), var.type.width));
} else {
value = var.type.decode(kv.second.offset(var.address - kv.first));
}
value &= var.mask;
return value;
}
throw std::out_of_range("No known mapping");
}
AddressSpace& AddressSpace::operator=(AddressSpace&& as) {
m_blocks.clear();
m_overlay = move(as.m_overlay);
for (auto& kv : as.m_blocks) {
m_blocks[kv.first] = move(as.m_blocks[kv.first]);
}
as.m_blocks.clear();
return *this;
}
int64_t Retro::toBcd(int64_t value) {
int64_t out = 0;
int shift = 0;
while (value) {
out |= (value % 10) << (shift * 4);
++shift;
value /= 10;
}
return out;
}
int64_t Retro::toLNBcd(int64_t value) {
int64_t out = 0;
int shift = 0;
while (value) {
out |= (value % 10) << (shift * 8);
++shift;
value /= 10;
}
return out;
}
bool Retro::isBcd(uint64_t value) {
uint64_t halfdigits = (value >> 1) & 0x7777777777777777;
return !((halfdigits + 0x3333333333333333) & 0x8888888888888888);
}